Intelligent Decision Making Using Particle Swarm Optimization for Optimizing Product-Mix Model
نویسندگان
چکیده
The development and deployment of managerial decision support system represents an emerging trend in the business and organizational field in which the increased application of Decision Support Systems (DSS) can be compiling by Intelligent Systems (IS). Decision Support Systems (DSS) are a specific class of computerized information system that supports business and organizational decision-making activities. A properly designed DSS is an interactive software-based system intended to help decision makers compile useful information from raw data, documents, personal knowledge, and/or business models to identify and solve problems and make decisions. Competitive business pressures and a desire to leverage existing information technology investments have led many firms to explore the benefits of intelligent data management solutions such as Particle Swarm Optimization (PSO). This study proposes a new PSO (SPSO)-model based on product mix model for optimizing Constraint values as well as objective function. The formulations of the objective function for the minimization problem. This technology is designed to help businesses to finding multi objective functions, which can help to understand the purchasing behavior of their key customers, detect likely credit card or insurance claim fraud, predict probable changes in financial markets, etc.
منابع مشابه
A Particle Swarm Optimization Approach in the Construction of Decision-making Model
The paper introduces an intelligent decision-making model which is based on the application of artificial neural networks (ANN) and swarm intelligence technologies. The proposed model is used to generate one-step forward investment decisions for stock markets. The ANNs are used to make the analysis of historical daily stock returns and to calculate one day forward possible profit, which could b...
متن کاملProduction Planning Optimization Using Genetic Algorithm and Particle Swarm Optimization (Case Study: Soofi Tea Factory)
Production planning includes complex topics of production and operation management that according to expansion of decision-making methods, have been considerably developed. Nowadays, Managers use innovative approaches to solving problems of production planning. Given that the production plan is a type of prediction, models should be such that the slightest deviation from their reality. In this ...
متن کاملADAPTIVE NEURO-FUZZY INFERENCE SYSTEM OPTIMIZATION USING PSO FOR PREDICTING SEDIMENT TRANSPORT IN SEWERS
The flow in sewers is a complete three phase flow (air, water and sediment). The mechanism of sediment transport in sewers is very important. In other words, the passing flow must able to wash deposited sediments and the design should be done in an economic and optimized way. In this study, the sediment transport process in sewers is simulated using a hybrid model. In other words, using the Ada...
متن کاملA COMBINATION OF PARTICLE SWARM OPTIMIZATION AND MULTI-CRITERION DECISION-MAKING FOR OPTIMUM DESIGN OF REINFORCED CONCRETE FRAMES
Structural design optimization usually deals with multiple conflicting objectives to obtain the minimum construction cost, minimum weight, and maximum safety of the final design. Therefore, finding the optimum design is hard and time-consuming for such problems. In this paper, we borrow the basic concept of multi-criterion decision-making and combine it with Particle Swarm Optimi...
متن کاملEVELOPMENT OF ANFIS-PSO, SVR-PSO, AND ANN-PSO HYBRID INTELLIGENT MODELS FOR PREDICTING THE COMPRESSIVE STRENGTH OF CONCRETE
Concrete is the second most consumed material after water and the most widely used construction material in the world. The compressive strength of concrete is one of its most important mechanical properties, which highly depends on its mix design. The present study uses the intelligent methods with instance-based learning ability to predict the compressive strength of concrete. To achieve this ...
متن کامل